منابع مشابه
Classification Using Linear Discriminant Analysis and Quadratic Discriminant Analysis
2 Classification of One-Dimensional Data 2 2.1 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1.1 Building the LDA Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1.2 Results of One-Dimensional LDA Classification . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Quadratic Discriminant Analysis . . . . . ....
متن کاملFisher Linear Discriminant Analysis
Fisher Linear Discriminant Analysis (also called Linear Discriminant Analysis(LDA)) are methods used in statistics, pattern recognition and machine learning to find a linear combination of features which characterizes or separates two or more classes of objects or events. The resulting combination may be used as a linear classifier, or, more commonly, for dimensionality reduction before later c...
متن کاملBiostatistics 303. Discriminant analysis.
In this article, it was planned that we shall discuss Discriminant and Cluster analysis. While preparing the discussions for both topics, there was an overwhelming large amount of information and thus we shall concentrate on Discriminant analysis only and leave Cluster analysis to Biostatistics 304. Discriminant analysis (DA) was the traditional statistical technique used for differentiating gr...
متن کاملSeparable linear discriminant analysis
Linear discriminant analysis (LDA) is a popular technique for supervised dimension reduction. Due to the curse of dimensionality usually suffered by LDA when applied to 2D data, several two-dimensional LDA (2DLDA) methods have been proposed in recent years. Among which, the Y2DLDA method, introduced by Ye et al. (2005), is an important development. The idea is to utilize the underlying 2D data ...
متن کاملKernel Reference Discriminant Analysis
Linear Discriminant Analysis (LDA) and its nonlinear version Kernel Discriminant Analysis (KDA) are well-known and widely used techniques for supervised feature extraction and dimensionality reduction. They determine an optimal discriminant space for (non)linear data projection based on certain assumptions, e.g. on using normal distributions (either on the input or in the kernel space) for each...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2018
ISSN: 2169-3536
DOI: 10.1109/access.2018.2881256